IN ACCORDANCE WITH EN 15804+A2 & ISO 14025

RIHA inspection hatch HAGAB INDUSTRI AB

EPD HUB, HUB-4515

Published on 23.11.2025, last updated on 23.11.2025, valid until 22.11.2030

Life Cycle Assessment study has been performed in accordance with the requirements of EN 15804, EPD Hub PCR version 1.2 (24 Mar 2025) and JRC characterization factors EF 3.1.

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025

GENERAL INFORMATION

Manufacturer									
Manufacturer	Hagab Industri AB								
Address	Industrivägen 5, 562 41 Taberg								
Contact details	info@hagab.com								
Website	www.hagab.com								

EPD standards, scope and	verification
Program operator	EPD Hub, hub@epdhub.com
Reference standard	EN 15804:2012+A2:2019/AC:2021 and ISO 14025
PCR	EPD Hub Core PCR Version 1.2, 24 Mar 2025
Sector	Construction product
Category of EPD	Third party verified EPD
Parent EPD number	Not Applicable
Scope of the EPD	Cradle to gate with options, A4-A5, and modules C1-C4, D
EPD author	Oscar Ternström Ampiro Group AB
EPD verification	Independent verification of this EPD and data, according to ISO 14025: ☐ Internal certification ☐ External verification
EPD verifier	Yazan Babour, as an authorized verifier acting for EPD Hub Limited

This EPD is intended for business-to-business and/or business-to-consumer communication. The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

Product									
Product name	RIHA Inspection hatch								
Place(s) of raw material origin	Europe								
Place of production	Sweden								
Place(s) of installation and use	Sweden								
Period for data	2024								
Averaging in EPD	Multiple products								
Variation in GWP-fossil for A1-A3 (%)	-2,8% to +6,6%								
A1-A3 Specific data (%)	6,2								

Environmental data summa	ry								
Declared unit	Inspection hatch								
Declared unit mass	1 kg								
GWP-fossil, A1-A3 (kgCO ₂ e)	2,86E+00								
GWP-total, A1-A3 (kgCO ₂ e)	2,28E+00								
Secondary material, inputs (%)	24,6								
Secondary material, outputs (%)	88,4								
Total energy use, A1-A3 (kWh)	10,7								
Net freshwater use, A1-A3 (m³)	1,32								

PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

HAGAB is one of Sweden's leading companies which develop, manufacture and sell advanced solutions for fire protection and ventilation. Since 1985, HAGAB have been making everyday life easier and safer for our customers.

At Hagab, we are driven by the ambition to develop sustainable, safe, and easy-to-use products. That's why we're more than willing to go the extra mile to find secure alternatives and smart solutions - so that you, as our customer, don't have to.

Our development and production take place locally in Taberg, just south of Jönköping. Hagab is part of the Herenco Group.

PRODUCT DESCRIPTION

The RIHA inspection/smoke hatch consists of a mounting frame. The frame is mounted onto the duct or plant room wall using sheet metal screws or pop rivets. The RIHA is hinged, equipped with a locking knob and handle.

As an option, the hatch can be fitted with a lock case for a cylinder lock (e.g. ASSA type) or a lock operated with, for example, a triangular key. For all available lock types, see the product sheet.

This EPD covers sizes ranging from 200x200 mm up to 800x2000 mm, with 50 mm increments as standard. The RIHA inspection hatch can also be custom ordered with increments down to 1 mm.

Further information can be found at: www.hagab.com

PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass- %	Material origin
Metals	87%	Europe
Minerals	8%	Europe
Fossil materials	5%	Europe
Bio-based materials		

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate

Biogenic carbon content in product, kg C	0
Biogenic carbon content in packaging, kg C	0,1580

FUNCTIONAL UNIT AND SERVICE LIFE

Declared unit	Inspection hatch
Mass per declared unit	1 kg

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025

PRODUCT LIFE-CYCLE

SYSTEM BOLINDARY

This EPD covers the life-cycle modules listed in the following table.

Pro	oduct sta	ge	Asser sta					Use stage		End of life stage Beyond the system boundaries								
A1	A2	A3	A4			B2		B4		В6	В7	C1	C2	C3	C4			
x	x	x	x	x	MND	MND	MND	MND	MND	MND	MND	x	x	x	x	x		
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction/de- molition	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling

Modules not declared = MND. Modules not relevant = MNR.

MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

A Sweden-based approach is used in modelling the electricity mix utilized in the factory. Our manufacturing process includes punching sheet metal, bending and assembling. All the electricity and heating used for these processes are accounted for based on sales volume. No ancillary materials are used in this process. A scrap factor of 10% is taken for punching metal sheets. The manufacturing waste is 100% recycled due to close collaboration with waste process companies and 50 km with Euro 6 lorry is assumed for the transport. The finished product is packed on an appropriate wooden pallet for the specific size, plastered, and anchored with plastic strips.

The use of green energy in manufacturing is demonstrated through contractual instruments (GOs, RECs, etc.), and its use is ensured throughout the validity period of this EPD.

TRANSPORT AND INSTALLATION (A4-A5)

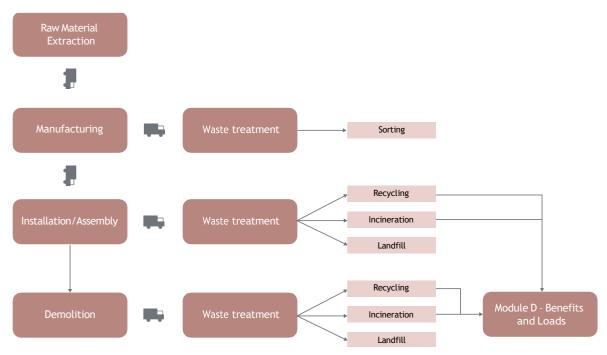
Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions. The inspection hatches are mostly sold locally therefore a 100 km transportation by Euro 6 lorry is

assumed. The product is assumed to be installed with a power tool; therefore, fuel consumption is accounted for. A5 involves waste treatment of packaging where 40% of the plastering packaging is assumed to be recycled, 37% incinerated for energy recovery and 23% sent to landfill. The waste treatment of the pallet is modelled according to Eurostat & PSR-0014 v2 (2023) where 32% are recycled, 30% incarnated for energy recovery and 38% are sent to landfill. A transport distance of 50 km is assumed.

PRODUCT USE AND MAINTENANCE (B1-B7)

The environmental impact of the use phase for this product can be neglected therefore this phase has not been included in the analysis. Further, air, soil, and water impacts during the use phase have not been studied. Air, soil, and water impacts during the use phase have not been studied.

PRODUCT END OF LIFE (C1-C4, D)


The modelled scenario for EOL is based on recycling, incarnation and landfill. C1 covers the energy used for deconstructing the product where a power tool is assumed to be involved, therefore electricity consumption is accounted for. C2 involves the transportation of waste which is assumed to be 50 km with a Euro 5 lorry. C3 covers both the sorting and pressing of iron scrap and the handling of waste stone wool. C4 includes the waste disposal processes where 95% of the steel is assumed to be recycled and 5% put in landfill, based on national and EU statistics. For the stone wool, 75% is assumed to be recycled and 25% put in landfill, based on data forecasts from Rockwool. D includes the loads from recycling the steel and stone wool further the benefit of avoiding virgin production of steel and stone wool.

HAGAB®

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025

MANUFACTURING PROCESS

LIFE-CYCLE ASSESSMENT

CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

The production of capital equipment, construction activities, and infrastructure, maintenance and operation of capital equipment, personnel-related activities, energy and water use related to company management and sales activities are excluded.

VALIDATION OF DATA

Data collection for production, transport, and packaging was conducted using time and site-specific information, as defined in the general information section on page 1 and 2. Upstream process calculations rely on generic data as defined in the Bibliography section. Manufacturer-provided specific and generic data were used for the product's manufacturing stage.

The analysis was performed in One Click LCA EPD Generator, with the 'Cut-Off, EN 15804+A2' allocation method, and characterization factors according to EN 15804:2012+A2:2019/AC:2021 and JRC EF 3.1.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

Data type	Allocation
Raw materials	No allocation
Packaging material	No allocation
Ancillary materials	Not applicable
Manufacturing energy and waste	Allocated by revenue

PRODUCT & MANUFACTURING SITES GROUPING

Type of grouping	Multiple products
Grouping method	Based on a representative product
Variation in GWP-fossil for A1-A3, %	-2,8% to +6,6%

This EPD is product and factory specific.

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025

LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. The EPD Generator uses Ecoinvent v3.10.1 and One Click LCA databases as sources of environmental data. Allocation used in Ecoinvent 3.10.1 environmental data sources follow the methodology 'allocation, Cut-off, EN 15804+A2'.

IN ACCORDANCE WITH FN 15804+A2 & ISO 14025

ENVIRONMENTAL IMPACT DATA

The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding threshold values, safety margins or risks.

CORE ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, EF 3.1

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	B6	В7	C1	C2	С3	C4	D
GWP - total ¹⁾	kg CO2e	2,64E+00	1,01E-02	-3,67E-01	2,28E+00	2,58E-02	6,44E-01	MND	1,48E-03	8,98E-03	8,77E-02	1,24E-03	-1,06E+00						
GWP - fossil	kg CO2e	2,64E+00	1,01E-02	2,08E-01	2,86E+00	2,58E-02	6,41E-02	MND	1,27E-03	8,98E-03	8,78E-02	1,24E-03	-1,21E+00						
GWP - biogenic	kg CO2e	-4,09E-03	2,27E-06	-5,91E-01	-5,95E-01	5,19E-06	5,79E-01	MND	2,82E-05	1,96E-06	-4,22E-05	-4,09E-07	1,51E-01						
GWP - LULUC	kg CO2e	4,70E-04	4,53E-06	1,55E-02	1,59E-02	9,27E-06	2,08E-04	MND	1,78E-04	3,98E-06	2,50E-05	4,12E-07	-5,52E-04						
Ozone depletion pot.	kg CFC-11e	3,75E-10	1,50E-10	4,79E-09	5,32E-09	5,14E-10	2,24E-10	MND	3,76E-11	1,26E-10	2,81E-10	2,23E-11	-5,43E-09						
Acidification potential	mol H+e	7,12E-03	3,45E-05	1,06E-03	8,21E-03	5,37E-05	1,55E-04	MND	7,12E-06	3,00E-05	2,40E-04	6,46E-06	-1,46E-02						
EP-freshwater ²⁾	kg Pe	6,08E-05	7,89E-07	7,34E-05	1,35E-04	1,74E-06	3,70E-06	MND	4,57E-07	6,98E-07	1,26E-05	7,71E-08	-5,42E-04						
EP-marine	kg Ne	1,51E-03	1,14E-05	5,19E-04	2,04E-03	1,29E-05	9,81E-05	MND	2,12E-06	9,71E-06	5,56E-05	3,27E-06	-1,10E-03						
EP-terrestrial	mol Ne	1,74E-02	1,24E-04	3,46E-03	2,09E-02	1,39E-04	4,92E-04	MND	1,95E-05	1,06E-04	6,22E-04	2,88E-05	-1,16E-02						
POCP ("smog") ³⁾	kg NMVOCe	5,07E-03	5,09E-05	1,20E-03	6,32E-03	8,94E-05	1,55E-04	MND	4,91E-06	4,18E-05	1,83E-04	9,76E-06	-4,05E-03						
ADP-minerals & metals ⁴⁾	kg Sbe	2,89E-05	2,83E-08	9,00E-07	2,98E-05	8,59E-08	8,49E-07	MND	2,95E-08	2,93E-08	1,36E-06	1,78E-09	-1,13E-05						
ADP-fossil resources	WJ	3,18E+01	1,47E-01	3,55E+00	3,55E+01	3,63E-01	7,22E-01	MND	2,09E-01	1,26E-01	2,73E-01	1,76E-02	-1,17E+01						
Water use ⁵⁾	m³e depr.	-2,72E-01	7,26E-04	1,06E-01	-1,65E-01	1,81E-03	1,73E-02	MND	1,15E-02	5,87E-04	8,40E-03	7,03E-05	-3,15E-01						

- 1) GWP = Global Warming Potential.
- 2) EP = Eutrophication potential. Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO4e.
- 3) POCP = Photochemical ozone formation.
- 4) ADP = Abiotic depletion potential.
- 5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025

ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, EF 3.1

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	B6	В7	C1	C2	С3	C4	D
Particulate matter	Incidence	2,46E-07	1,01E-09	1,11E-08	2,59E-07	1,90E-09	1,22E-09	MND	1,23E-10	7,20E-10	3,65E-09	3,06E-10	-7,28E-08						
lonizing radiation ⁶⁾	kBq U235e	2,23E-02	1,28E-04	1,66E-02	3,91E-02	4,68E-04	1,58E-02	MND	1,53E-02	1,02E-04	2,34E-03	2,33E-05	1,37E-02						
Ecotoxicity (freshwater)	CTUe	3,84E+00	2,08E-02	1,11E+00	4,98E+00	4,83E-02	1,62E-01	MND	1,12E-02	1,99E-02	2,47E-01	2,49E-03	-2,84E+00						
Human toxicity, cancer	CTUh	1,48E-09	1,67E-12	4,55E-10	1,94E-09	4,33E-12	8,64E-12	MND	1,17E-12	1,52E-12	1,89E-11	1,91E-13	-1,16E-10						
Human tox, non-cancer	CTUh	1,59E-08	9,52E-11	1,59E-09	1,76E-08	2,30E-10	4,28E-10	MND	3,66E-11	7,90E-11	1,21E-09	7,95E-12	-6,37E-09						
SQP ⁷⁾	-	2,21E+00	1,48E-01	3,93E+01	4,17E+01	2,19E-01	1,93E-01	MND	4,47E-02	7,74E-02	5,19E-01	2,40E-02	-3,46E+00						

⁶⁾ EN 15804+A2 disclaimer for Ionizing radiation, human health. This impact category deals mainly with the eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

USE OF NATURAL RESOURCES

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	B6	В7	C1	C2	СЗ	C4	D
Renew. PER as energy ⁸⁾	WJ	9,38E-01	2,02E-03	2,61E+00	3,55E+00	6,36E-03	-4,97E+00	MND	1,43E-01	1,73E-03	5,14E-02	2,92E-04	-2,82E-01						
Renew. PER as material	WJ	5,94E-02	0,00E+00	5,23E+00	5,29E+00	0,00E+00	-5,23E+00	MND	0,00E+00	0,00E+00	-4,45E-02	-1,48E-02	-8,38E-01						
Total use of renew, PER	WJ	9,97E-01	2,02E-03	7,84E+00	8,84E+00	6,36E-03	-1,02E+01	MND	1,43E-01	1,73E-03	6,91E-03	-1,45E-02	-1,12E+00						
Non-re, PER as energy	WJ	3,13E+01	1,47E-01	3,30E+00	3,47E+01	3,63E-01	1,96E-01	MND	2,09E-01	1,26E-01	-1,26E+00	-8,82E-02	-1,18E+01						
Non-re, PER as material	WJ	1,53E+00	0,00E+00	8,69E-01	2,40E+00	0,00E+00	-8,90E-01	MND	0,00E+00	0,00E+00	-1,26E+00	-2,46E-01	7,87E-02						
Total use of non-re, PER	WJ	3,28E+01	1,47E-01	4,17E+00	3,71E+01	3,63E-01	-6,95E-01	MND	2,09E-01	1,26E-01	-2,52E+00	-3,34E-01	-1,17E+01						
Secondary materials	kg	2,46E-01	6,26E-05	1,01E-01	3,46E-01	1,69E-04	1,86E-03	MND	2,50E-05	5,66E-05	3,76E-04	6,78E-06	6,42E-01						
Renew. secondary fuels	WJ	2,14E-03	7,95E-07	1,41E-01	1,43E-01	2,13E-06	1,37E-06	MND	8,01E-08	7,20E-07	1,54E-05	7,87E-08	-6,60E-05						
Non-ren. secondary fuels	WJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	-6,72E-04						
Use of net fresh water	m³	1,31E+00	2,17E-05	2,44E-03	1,32E+00	4,95E-05	-5,54E-06	MND	2,73E-04	1,68E-05	2,03E-04	1,25E-06	-3,43E-03						

⁸⁾ PER = Primary energy resources.

⁷⁾ SQP = Land use related impacts/soil quality.

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025

END OF LIFE - WASTE

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	B6	В7	C1	C2	СЗ	C4	D
Hazardous waste	kg	7,53E-03	2,49E-04	1,03E-02	1,81E-02	5,28E-04	1,61E-03	MND	1,49E-04	2,20E-04	3,54E-03	2,38E-05	-3,85E-01						
Non-hazardous waste	kg	2,07E-01	4,61E-03	2,68E-01	4,79E-01	1,11E-02	6,60E-01	MND	2,93E-03	4,12E-03	8,80E-02	1,39E-02	-3,39E+00						
Radioactive waste	kg	5,84E-05	3,13E-08	1,58E-05	7,42E-05	1,16E-07	1,21E-05	MND	3,26E-06	2,51E-08	5,95E-07	5,83E-09	-6,75E-06						

END OF LIFE - OUTPUT FLOWS

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	B6	В7	C1	C2	С3	C4	D
Components for re-use	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	-2,82E-12						
Materials for recycling	kg	0,00E+00	0,00E+00	8,30E-02	8,30E-02	0,00E+00	1,60E-01	MND	0,00E+00	0,00E+00	9,21E-01	0,00E+00	-9,50E-04						
Materials for energy rec	kg	0,00E+00	0,00E+00	8,00E-04	8,00E-04	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	1,60E-02	0,00E+00	-5,09E-06						
Exported energy	WJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	5,22E-01	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	-9,34E-04						
Exported energy - Electricity	WJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,17E-01	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Exported energy - Heat	WJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,05E-01	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025

ENVIRONMENTAL IMPACTS - EN 15804+A1, CML

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	B6	В7	C1	C2	С3	C4	D
Global Warming Pot.	kg CO2e	2,39E+00	1,01E-02	1,94E-01	2,59E+00	2,56E-02	4,41E-02	MND	1,46E-03	8,93E-03	8,77E-02	1,22E-03	-1,21E+00						
Ozone depletion Pot.	kg CFC-11e	3,54E-10	1,19E-10	5,49E-09	5,97E-09	4,09E-10	1,82E-10	MND	3,17E-11	1,01E-10	2,32E-10	1,77E-11	-4,81E-09						
Acidification	kg SO2e	5,16E-03	2,64E-05	6,20E-04	5,80E-03	4,31E-05	5,47E-05	MND	5,51E-06	2,29E-05	1,92E-04	4,71E-06	-4,05E-03						
Eutrophication	kg PO43e	5,20E-04	6,43E-06	3,53E-03	4,05E-03	1,09E-05	2,99E-05	MND	1,26E-06	5,58E-06	2,91E-05	1,35E-06	-7,65E-04						
POCP ("smog")	kg C2H4e	8,41E-04	2,35E-06	8,15E-05	9,25E-04	4,56E-06	7,72E-06	MND	4,08E-07	2,05E-06	1,15E-05	4,52E-07	-6,00E-04						
ADP-elements	kg Sbe	2,58E-05	2,76E-08	8,73E-07	2,67E-05	8,40E-08	7,65E-08	MND	2,97E-08	2,86E-08	1,36E-06	1,74E-09	-1,12E-05						
ADP-fossil	MJ	1,55E+04	1,45E-01	2,51E+00	1,55E+04	3,55E-01	1,61E-01	MND	7,84E-03	1,25E-01	2,33E-01	1,72E-02	-1,20E+01						

ADDITIONAL INDICATOR - GWP-GHG

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
GWP-GHG ⁹⁾	kg CO₂e	2,64E+00	1,01E-02	2,24E-01	2,87E+00	2,58E-02	6,43E-02	MND	1,45E-03	8,98E-03	8,78E-02	1,24E-03	-1,21E+00						

9) This indicator includes all greenhouse gases excluding biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. In addition, the characterisation factors for the flows - CH4 fossil, CH4 biogenic and Dinitrogen monoxide - were updated. This indicator is identical to the GWP-total of EN 15804:2012+A2:2019 except that the characterisation factor for biogenic CO2 is set to zero.

SCENARIO DOCUMENTATION

MANUFACTURING ENERGY SCENARIO DOCUMENTATION

Scenario parameter	Value
Electricity data source and quality	Market for electricity, medium voltage (Reference product: electricity, medium voltage) Sweden
Electricity CO ₂ e/kWh	0,0254 CO ₂ e/kWh
District heating data source and quality	Heat production, light fuel oil, at boiler 100kW condensing, non-modulating (Reference product: heat, central or small-scale, other than natural gas)
District heating CO2e/kWh	0,027 CO ₂ e/kWh

TRANSPORT SCENARIO DOCUMENTATION A4

Scenario parameter	Value
Fuel and vehicle type. Eg, electric truck, diesel powered truck	Diesel powered truck
Average transport distance, km	100
Capacity utilization (including empty return) %	50
Bulk density of transported products	
Volume capacity utilization factor	1

INSTALLATION SCENARIO DOCUMENTATION A5

Scenario information	Value
Ancillary materials for installation (specified by material) / kg or other units as appropriate	0,01
Water use / m³	0
Other resource use / kg	0
Quantitative description of energy type (regional mix) and consumption during the installation process / kWh or MJ	0,05
Waste materials on the building site before waste processing, generated by the product's installation (specified by type) / kg	0
Output materials (specified by type) as result of waste processing at the building site e.g. collection for recycling, for energy recovery, disposal (specified by route) / kg	0,36
Direct emissions to ambient air, soil and water / kg	0

THIRD-PARTY VERIFICATION STATEMENT

EPD Hub declares that this EPD is verified in accordance with ISO 14025 by an independent, third-party verifier. The project report on the Life Cycle Assessment and the report(s) on features of environmental relevance are filed at EPD Hub. EPD Hub PCR and ECO Platform verification checklist are used.

EPD Hub is not able to identify any unjustified deviations from the PCR and EN 15804+A2 in the Environmental Product Declaration and its project report.

EPD Hub maintains its independence as a third-party body; it was not involved in the execution of the LCA or in the development of the declaration and has no conflicts of interest regarding this verification.

The company-specific data and upstream and downstream data have been examined as regards plausibility and consistency. The publisher is responsible for ensuring the factual integrity and legal compliance of this declaration.

The software used in creation of this LCA and EPD is verified by EPD Hub to conform to the procedural and methodological requirements outlined in ISO 14025:2010, ISO 14040/14044, EN 15804+A2, and EPD Hub Core Product Category Rules and General Program Instructions.

Verified tools

Tool verifier: Magaly Gonzalez Vazquez

Tool verification validity: 27 March 2025 - 26 March 2028

Yazan Babour, as an authorized verifier acting for EPD Hub Limited

21.11.2025

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

APPENDIX A: PRODUCT VARIATIONS

The table in this appendix can be used to convert the results of the LCA presented in this EPD to specific sizes and configurations of the RIHA inspection hatch that are available at HAGAB.

Size (mm)	Width (mm)	Height (mm)	Weight (kg)
200x200	200	200	3
300x300	300	300	4,5
400x400	400	400	6,5
500x500	500	500	9
600x600	600	600	11,5
700x700	700	700	12,5
800x800	800	800	15
800x1000	800	1000	19,5
800x1200	800	1200	24
800x1400	800	1400	28
800x1600	800	1600	30
800x1800	800	1800	37
800x2000	800	2000	42

